

1/11/2023 Grand Ballroom A/B (4th Floor)

You Will Learn: how key soil health and agronomic factors impact yields and water quality, and how to interpret soil health testing to implement actions.

Making Sense of Soil Health Reports for No-Till

SARE PROJECTS

LNC20-439 ("Soil health and water quality nexus in sustainable agroecosystems")
ONC18-047 ("Making sense of Soil Health Reports – A partnership to develop recommendations for soil health testing, interpretation")

You Will Learn: how key soil health and agronomic factors impact yields and water quality, and how to interpret soil health testing to implement actions.

Why Test Soil Health?

What's wrong with the traditional soil fertility test? So, would a soil health test help? What test is the best? How do I interpret a soil health test? And can it help adjust/change my management?

Soil health & human health

Human health

Soil Health

Body mass index (height, weight) Lipid profile (cholesterol) Nutrition/digestive health

Bones & muscles

Physical properties

Chemical properties Biological properties Structure, compaction, erosivity

Just like us, soil needs daily calory/vitamin intake, annual check ups, and long-term health monitoring!

Soil health reports can soon look just like human health reports!

				Clinical Laboratory	Report		
		$-\bigcirc$	Patient Name DOE, JOHN	Date Drawn 12/20/10	Date I 12/2	Received 0/10	Date of Report
Ag Testing - Consultin	g		Sex Age M 31	Client Name / Address MEDICAL CENTER		1.D. Number 78987654	Account Numbe 12343
Account No.: 21183 SHEDEKAR, VINAYAK OHIO STATE UNIVERSITY EXTENSION 500 WOODY HAYES DR COLUMBUS OH 43210	Biological Soil Analysis Report Invoice No. : 1339110 Date Received : 02/22/2021 Date Reported : 02/24/021 Lab No. : 50399		Ordering Physician SMITH 123094567 Patient I.D./Soc. Sec Number	YOUR DOCTOR, M.D. 123 MAIN STREET ANYTOWN US 100	023	Specimen Number 918273	Time Drawn 11:00
Result: For : DAVE BRANDT Sample ID 1 : LONG-TERM WEST (CN) EAST (CC) Sample ID 2 : DBCN1 PLFA Soil Microbial Comm	unity Analysis		TEST NAME CHEM-SCREEN PANEL GLUCOSE SODIUM POTASSIUM	87 140 4.6	mg/dL mmol/L mmol/L	S REFE	65 - 125 136 - 144 3.6 - 5.1
Functional Group Biomas	s & Diversity		CHLORIDE	106	mmol/L		99 - 109
Total Living Microbial Biomass, Phospholipid Fatty Acid (PLFA) ng/g Functional Group Diversity Index	5854.60 1.459 trog r/Poor rfty Selon Average rfty Selon Average rfty Alone Average rfty Alone Average rfty Alone Average selon		CARBON DIOXIDE (BICARBOI BUN (BLODU UREA NITROGE CREATININE BUN/CREATININE RATIO URIC ACID PHOSPHATE CALCIUM MAGNESIUM CHOLESTEROL HOL CHOLESTEROL CHOLHOL RATIO CHOLESTEROL CHOLHOL RATIO	VATE) 28 N) 9 10.0 6.0 3.5 9.6 2.09 258 41 6.3 179	mmol/L mg/dL mg/dL mg/dL mg/dL mg/dL mg/dL mg/dL mg/dL	н 1 н 1	21 - 31 8 - 24 0.7 - 1.3 3.0 - 8.1 2.3 - 4.5 8.8 - 10.3 5.0 - 2.50 120 - 199 35 - 59 3.6 - 6.4 75 - 129
Total Bacteria	2247.55 38.39		TRIGLYCERIDES	231	mg/dL	н	40 - 200
Gram (+) Actinomycetes	1530.63 26.14 623.57 10.65		PROTEIN, TOTAL ALBUMIN GLOBULIN, CALCULATED	8.3 4.5 3.8	g/dL g/dL	н	6.5 - 8.3 4.0 - 5.0 2.1 - 3.6
Gram (-)	716.92 12.25		A/G RATIO	1.2	Pror		1.1 - 2.0
Rhizobia	8.72 0.15		BILIRUBIN, TOTAL	0.51	mg/dL	0	.20 - 1.50
Total Fungi Arbuscular Mycorrhizal Saprophytes	345.70 5.90 108.61 1.86 237.09 4.05		BILIRUBIN, DIRECT ALKALINE PHOSPHATASE GGT	0.10 85 24	mg/dL IU/L IU/L	0	30 - 110 5 - 80
Protozoa	12.63 0.22		ALT (SGPT)	45	IU/L	n	5 - 60
Undifferentiated	3248.71 55.49		AMYLASE, SERUM	33 235	IU/L IU/L	н 1	0 - 100 100 - 215

Challenges with soil health testing

There is no universally accepted / agreed upon test Soil type, region, climate affect interpretation Sampling plays a role in the outcome Difficult to come up with prescriptive interpretation

Then why do it?

Skeptics – may help you cross the hump Beginners – track your progress, correct mistakes, accelerate transition

Transitional systems – accelerate transition
More mature systems – save costs, maximize benefits!
6. Reflect, Learn, Share!

Why do a soil health test? What to expect?

Ideally, we would have a few simple measurements that indicate a field's current level of soil health. And **these measurements** would help us identify management **practices** to increase the soil health. A soil health test should be **much like a** "wellness exam" for human health that finds areas that need some attention and provide us with an overall "health rating."

Authors Stacy Zuber and Eileen Kladivko

Purdue Agronomy

How to Understand and Interpret Soil Health Tests

Soil health has received increased attention during the past few years — and for good reason. The USDA-Natural Resources Conservation Service (NRCS) defines soil health as the "capacity of the soil to function as a vital, living ecosystem that sustains plants, animals, and humans."

It is important for us to protect and improv the soil health on our agricultural lands for both short- and long-term productivity. Soil health matters to farmers, consumers, and society as a whole. So clearly, finding ways to improve soil health on our nation's croplands should be a high priority. But the question of how to adequately measures on bachth arises. Soil health intervines many aspects that function together as a system: soil biology, fortility/ chemistry, and physical properties. Ideally, we would have a few simple measurements that indicate a fields current level of soil health. And these measurements would help us identify management practices to increase the soil health.

A soil health test should be much like a "wellness exam" for human health that finds areas that need some attention and provide us with an overall "health rating." In the same way, a soil health test should identify areas

North American Project to Evaluate Soil Health Measurements

Soil Health Institute led a 3-year, \$6.5-million project partnered with over 100 scientists at **124 long-term agricultural research sites** in the U.S., Canada, and Mexico evaluated

over 30 soil health measurements at each site

cost, practicality, availability, redundancy, and other filters

North American Project to Evaluate Soil Health Measurements

Tier 1 measures endorsed

- 1. Organic carbon,
- 2. pH,
- 3. Water-stable aggregation,
- 4. Crop yield,
- 5. Texture,
- 6. Penetration resistance,
- 7. Cation exchange capacity,
- 8. Electrical conductivity,

- 9. Nitrogen,
- 10. Phosphorus,
- 11. Potassium,
- 12. Carbon mineralization,
- 13. Nitrogen mineralization,
- 14. Erosion rating,
- 15. Base saturation,
- 16. Bulk density,
- 17. Available water holding

capacity, 18. Infiltration rate, and 19. Micronutrients

North American Project to Evaluate Soil Health Measurements

Tier 1 – minimum measurements

- 1) soil organic carbon concentration
- 2) carbon mineralization potential
- 3) aggregate stability

Why SOM is important? "...Active fraction of SOM is Core Indicator of overall soil quality and productivity..." 100 0.25 Organic (Tricoderma spp.) N0-till-Con.-Till-Strip-till Conv.-till No-till-Conv-till crop rotatio No-till crop roation New organic (degraded so $r^2 = 0.54^*$ 80 Organic (chicken manures scaling (%) 0.20 Organic (dairy manures) No-till-Conv.-till crop rotation Organic No-till-Conv.-till _ime/Gypsum (N 1112) Cover crops Chicken manures Degraded soil 8 0.15 60 Conv still Long-term No-till Compost Total N Soil quality 40 0.10 20 0.05 0 0.00 1000 1500 2000 500 0 800 1000 1200 1400 1600 200 600

Active carbon (mg kg⁻¹)

Active C (mg kg⁻¹)

Data from: Dr. Rafiq Islam

Solvita CO2 Burst Test

The Solvita CO_2 Burst Test is a new tool which easily and accurately measures soil biological CO_2 respiration.

Cost = \$25.00

Indicator of soil health – The rates of CO₂ release is generally regarded as an indicator of Soil Health and is favorably improved with practices such as cover cropping

Solvita Nitrogen Mineralization,

no cover crop

Solvita Field Test Color Number, 0 to 6.5	3.64 color
Your average soil temperature	65° f
Number of days in your crop's growing season	120 days
Adjusted CO ₂ -C based on the entered soil temp above	13 LBS/Acre
Likely Organic Nitrogen Mineralized over growing season	44 LBS/Acre
Dollars Saved Per Acre for 200 Bushel Per Hectare for 12.5 metric tons Corn*	\$21.32

Solvita Nitrogen Mineralization, Multi-species cover crop

Solvita Field Test Color Number, 0 to 6.5	5.66 color
Your average soil temperature	65° f
Number of days in your crop's growing season	120 days
Adjusted CO ₂ -C based on the entered soil temp above	101 LBS/Acre
Likely Organic Nitrogen Mineralized over growing season	158 LBS/Acre
Dollars Saved Per Acre for 200 Bushel Per Hectare for 12.5 metric tons Corn*	\$76.00

Andersons

Planting

January 10-13, 2023 • St. Louis, Mo.

Bio-Tech

LAFORGE

Sound 😽

Fescue sod border (>20 years) > 5mm 2 to 5 mm 1 to 2 mm 0.5 to 1 mm 0.25 to 0.5 mm 0.125 to 0.25 mm

— 0.053 to 0.0125 mm

Simple measures

Penetrometer Infiltration Soil temperature Soil moisture

Infiltration

The downward entry of water into the soil. The velocity at which water enters the soil is infiltration rate.

Simple measures

topsoil depth plant residue and signs of erosion root health Crop yields erosion Water quality

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

2021

Making sense of Soil Health Reports – A partnership to develop recommendations for soil health testing, interpretation

NCR SARE Partnership Grant **ONC18-047**

How to use soil health data for decision making?

Site Summary

Five Different Fields with different history of tillage & Cover crops

- 1. CT noCC: Conventionally tilled no Cover Crops
- 2. 2Yr CC: Recently transitioned to Cover Crops
- 3. 10Yr Hay: Under hay for 10 years
- 4. LT CC: ~40 years of No-till + cover crops (East Field)
- 5. LT CC: ~40 years of No-till + cover crops (West Field)

CFAES

Active Carbon (ppm) – in Field

Active C analysis conducted using a pre-commercialized version of Soil-1 Field Kit

Haney Soil Test

The Haney Test is a dual extraction procedure that allows the producer to assess overall soil health.

Used to track changes in soil health based on management decisions. Examines total organic carbon and total organic nitrogen to determine a C:N ratio used to make general cover crop recommendations.

Includes the Solvita CO₂ Burst Test to look at microbial activity and potentially mineralizable nitrogen.

The weak acid (H₃A) extraction represents some available plant nutrients. **Cost = \$49.50**

Haney Test

pH, excess lime rating, soluble salts organic matter (LOI) Soil Respiration Total Organic C, Total N, total Organic N (WEOC/N) Nitrate-N, Ammonium-N, Inorganic N, Total P, inorganic P, Organic P, K, Ca, Mg

Hanev

	Laborator	ries, Inc.		Laboratories, Inc.			Haney	
	Ag Testing - Consulting			Toot				
Account No. : 21183		Biological Soil Ana	ilysis Report	Account No.: 21183 Biological Soil Analysis Report			Test	
SHEDEKAR, VINAYAK OHIO STATE UNIVERSITY EXT 590 WOODY HAYES DR COLUMBUS OH	TENSION H 43210	Invoice No. : Date Received : Date Reported :	1339110 02/22/2021 02/24/2021	 SHEDEKAR, VINAYAK OHIO STATE UNIVERSITY 590 WOODY HAYES DR COLUMBUS 	VEXTENSION OH 43210	Invoice No Date Received Date Reported	0.: 1339110 d: 02/22/2021 d: 02/24/2021	
Results For : DAVE BRANDT				Results For : DAVE BRANDT				
Sample ID 1 : LONG-TERM WEST (CN)	EAST (CC)	Sample ID 3 :		Sample ID 1 : TILLED FIELD (NO	RTH	Sample ID 3 :		
Sample ID 2 : DBCC1		Sample ID 4 :		Sample ID 2 : DBTIL1		Sample ID 4 :		
Lab No. : 1113		Soil Depth: 0-8 in		Lab No. : 1122		Soil Depth: 0 - 8 in		
	Haney - Soil H	lealth Analysis			Haney - Soil H	lealth Analysis		
1:1 Soil pH	6.6	ICAP Sulfur, ppm S	3.7	1:1 Soil pH	6.2	ICAP Sulfur, ppm S	4.3	
1:1 Soluble Salts, mmho/cm	0.19	ICAP Calcium, ppm Ca	609	1:1 Soluble Salts, mmho/cm	0.13	ICAP Calcium, ppm Ca	472	
Excess Lime Rating	NONE	ICAP Magnesium, ppm Mg	88	Excess Lime Rating	NONE	ICAP Magnesium, ppm Mg	90	
Organic Matter, %LOI	3.2	ICAP Sodium, ppm Na	9	Organic Matter, %LOI	2.7	ICAP Sodium, ppm Na	12	
		ICAP Aluminum, ppm Al	117	WDRF Buffer pH	6.8	ICAP Aluminum, ppm Al	214	
Soil Respiration CO2-C, ppm C	148.0	Calculations		Soil Respiration CO ₂ -C, ppm C	79.6	Calculations		
Water Extract		Microbially Active Carbon (%MAC)	172.4	Water Extract		Microbially Active Carbon (%MAC)	90.9	
Total Nitrogen, ppm N	33.4	Organic C : Organic N	8.8	Total Nitrogen, ppm N	22.0	Organic C : Organic N	7.7	
Organic Nitrogen, ppm N	9.7	Organic N : Inorganic N	0.6	Organic Nitrogen, ppm N	11.4	Organic N : Inorganic N	1.6	
Total Organic Carbon, ppm C	86	Organic Nitrogen Release, ppm N	9.7	Total Organic Carbon, ppm C	88	Organic Nitrogen Release, ppm N	11.4	
H3A Extract		Organic Nitrogen Reserve, ppm N	0.0	H3A Extract		Organic Nitrogen Reserve, ppm N	0.0	
Nitrate, ppm NO3-N	13.1	Organic Phosphorus Release, ppm P	7.3	Nitrate, ppm NO3-N	6.2	Organic Phosphorus Release, ppm P	4.1	
Ammonium, ppm NH4-N	2.1	Organic Phosphorus Reserve, ppm P	< 0.1	Ammonium, ppm NH4-N	0.8	Organic Phosphorus Reserve, ppm P	< 0.1	
Inorganic Nitrogen, ppm N	15.3	Soil Health		Inorganic Nitrogen, ppm N	7.0	Soil Health		
Total (ICAP) Phosphorus, ppm P	26	Soil Health Calculation	15.02	Total (ICAP) Phosphorus, ppm P	8	Soil Health Calculation	10.85	
Inorganic (FIA) Phosphorus, ppm P	18.7	Cover Crop Suggestion 30% Le	gume 70% Grass	Inorganic (FIA) Phosphorus, ppm	P 3.6	Cover Crop Suggestion 40%	Legume 60% Grass	
Organic Phosphorus, ppm P	7.3			Organic Phosphorus, ppm P	4.1			
ICAP Potassium, ppm K	100			ICAP Potassium, ppm K	43			
ICAP Zinc, ppm Zn	2.64			ICAP Zinc, ppm Zn	0.45			waaraada
ICAP Iron, ppm Fe	82			ICAP Iron, ppm Fe	120			
ICAP Manganese, ppm Mn	7.0			ICAP Manganese, ppm Mn	4.7			Cultivating Solutions for Growth
ICAP Copper, ppm Cu	0.50			ICAP Copper, ppm Cu	0.55			
Reviewed By : Alexis Hobbs		3/16/2021 Copy : 1	Page 1 of 2	Reviewed By : Alexis Hobbs		3/16/2021 Copy : 1	Page 1 of 2	

Page 1 012 A Reviewed by . Alex

und site

_____ 4002 Chami Aun D O Day 700 RGE

Results For : DAVE BRANDT Sample ID 1 : LONG-TERM WEST (CN) EAST (CC) Sample ID 2 : DBCC1 Lab No. : 1113

ICAP Copper, ppm Cu

MAIIUNAL

January 10-13, 2023 • St. Louis, Mo.

IO-TILLAGE

CONFERENCE

Reviewed By : Alexis Hobbs

Sample ID 3 : Sample ID 4 : Soil Depth: 0-8 in

	Haney - Soil Health Analysis						
1:1 Soil pH	6.6	ICAP Sulfur, ppm S	3.7				
1:1 Soluble Salts, mmho/cm	0.19	ICAP Calcium, ppm Ca	609				
Excess Lime Rating	NONE	ICAP Magnesium, ppm Mg	88				
Organic Matter, %LOI	3.2	ICAP Sodium, ppm Na	9				
		ICAP Aluminum, ppm Al	117				
Soil Respiration CO ₂ -C, ppm C	148.0	Calculations					
Water Extract		Microbially Active Carbon (%MAC	C) 172.4				
Total Nitrogen, ppm N	33.4	Organic C : Organic N	8.8				
Organic Nitrogen, ppm N	9.7	Organic N : Inorganic N	0.6				
Total Organic Carbon, ppm C	86	Organic Nitrogen Release, ppm 1	N 9.7				
H3A Extract		Organic Nitrogen Reserve, ppm I	N 0.0				
Nitrate, ppm NO3-N	13.1	Organic Phosphorus Release, pp	m P 7.3				
Ammonium, ppm NH4-N	2.1	Organic Phosphorus Reserve, pp	m P < 0.1				
Inorganic Nitrogen, ppm N	15.3	Soil Health					
Total (ICAP) Phosphorus, ppm P	26	Soil Health Calculation	15.02				
Inorganic (FIA) Phosphorus, ppm P	18.7	Cover Crop Suggestion	30% Legume 70% Grass				
Organic Phosphorus, ppm P	7.3						
ICAP Potassium, ppm K	100						
ICAP Zinc, ppm Zn	2.64						
ICAP Iron, ppm Fe	82						
ICAP Manganese, ppm Mn	7.0						

0.50

Yetter

Ag Leader

3/16/2021

exapta.

Copy : 1

solutions, inc.

Precision

Planting

Results For : DAVE BRANDT Sample ID 1 : TILLED FIELD (NORTH Sample ID 2 : DBTIL1 Lab No. : 1122

9 117

8.8 0.6 9.7 0.0

Page 1 of 2

Andersons

Sample ID 3 : Sample ID 4 : Soil Depth: 0-8 in

	Hanna C. Hanna	a a láb. A se a bara ta		
	Haney - Soil H	eaith Analysis		
1:1 Soil pH	6.2	ICAP Sulfur, ppm S		4.3
1:1 Soluble Salts, mmho/cm	0.13	ICAP Calcium, ppm Ca		472
Excess Lime Rating	NONE	ICAP Magnesium, ppm Mg		90
Organic Matter, %LOI	2.7	ICAP Sodium, ppm Na		12
WDRF Buffer pH	6.8	ICAP Aluminum, ppm Al		214
Soil Respiration CO ₂ -C, ppm C	79.6	Calculations		
Water Extract		Microbially Active Carbon (%	MAC)	90.9
Total Nitrogen, ppm N	22.0	Organic C : Organic N		7.7
Organic Nitrogen, ppm N	11.4	Organic N : Inorganic N		1.6
Total Organic Carbon, ppm C	88	Organic Nitrogen Release, p	pm N	11.4
H3A Extract		Organic Nitrogen Reserve, p	pm N	0.0
Nitrate, ppm NO3-N	6.2	Organic Phosphorus Release	e, ppm P	4.1
Ammonium, ppm NH4-N	0.8	Organic Phosphorus Reserve	e, ppm P	< 0.1
Inorganic Nitrogen, ppm N	7.0	Soil Health		
Total (ICAP) Phosphorus, ppm P	8	Soil Health Calculation		10.85
Inorganic (FIA) Phosphorus, ppm P	3.6	Cover Crop Suggestion	40% Le	gume 60% Grass
Organic Phosphorus, ppm P	4.1			
ICAP Potassium, ppm K	43			
ICAP Zinc, ppm Zn	0.45			
ICAP Iron, ppm Fe	120			
ICAP Manganese, ppm Mn	4.7			
ICAP Copper, ppm Cu	0.55			
Reviewed By : Alexis Hobbs		3/16/2021	Copy : 1	Page 1 of 2
GSZ OLIALITY	ILIII ILIII		rcai fi	LAGE TOOLS
		אד 🔍 🔍	Cultivating Solution	ns for Growth
Sound 🔀	WidW	lest / L	ΠΛ	WN
	W Bio-Te			

		$ \bigcirc$ $-$			
	Neighbor	Dave (2 yr CC)	Dave (10 Yr Hay)	Dave (E) 40 Yr NT+CC	Dave (W) 40 Yr NT+CC
Organic matter (%)	2.7, 2.7, 2.5	3.3, 2.9, 2.9	4.5, 3.5, 3.6	3.2, 3.3, 2.9	4.5, 4.8, 4.8
Soil Respiration CO ₂ -C					
Microbially Active Carbon (%MAC)					
Water Extractable – Org. C					
Ag Leade	vexapta. solutions, inc. Precision Planting ⁵	The Constant of the Constant o	Sound 🛪 🐇	MidWest	Wearparts Cutivating Solutions for Growth DANN

	Neighbor	Dave (2 yr CC)	Dave (10 Yr Hay)	Dave (E) 40 Yr NT+CC	Dave (W) 40 Yr NT+CC
Water Extractable – Org. C	88, 93, 128	91, 87, 83	142, 125, 106	86, 99, 121	106, 125, 122
Water Extractable – Org. N					
Traditional N					
Haney Test N					
Ag Leade	Vexapta. solutions, inc. Precision Planting	The Constant of the constant o	Sound 🛪 🐇		Wearparts Cutivating Solutions for Growth

Chemical Indicators

Lab No.: 1113

Haney - Soil Health Analysis Contd.

Nutrient Quantity Available for Next Crop	
Nitrogen, Ibs N/A	60.0
Phosphorus, Ibs P2Os/A	59.8
Potassium, Ibs K2O/A	120.5
Nutrient Value, \$/A	121.95

40Yr NT+CC field has Nutrients worth **\$122/acre vs \$61/acre** in field with Tillage + NoCC

Nitrogen Savings by using the Haney Test	
Traditional evaluation, lbs N/A	31.5
Haney Test N evaluation, Ibs N/A	60.0
Nitrogen Difference, Ibs N/A	28.4
N savings, \$/A	18.20

Lab No.: 1122

Compared to traditional test, Haney Test would help save \$18/acre in N cost

Haney - Soil Health Analysis Contd.

Nutrient Quantity Available for Next Crop

Nitrogen, Ibs N/A Phosphorus, Ibs P2Os/A Potassium, lbs K2O/A Nutrient Value, S/A

Nitrogen Savings by using the Haney Test Traditional evaluation, lbs N/A 44.2 14.9 17.7Haney Test N evaluation, lbs N/A 44.2 52.1 Nitrogen Difference, Ibs N/A 29.2 61.24 N savings, \$/A 18.71

PLFA test

Soil biological testing at Ward Laboratories is conducted by analyzing phospholipid fatty acids (PLFA). It allows us to identify various functional groups of interest through known PLFA biomarkers with respect to microbial community.

Cost = \$ 59.50

PLFA Test

Total bacteria (gram +, gram -), total Fungí (arbuscular Mycorrhizae, Saprophytes), Protozoa, undifferentiated microorganisms. Total bacteria (gram+, gram -) total fungi (arbuscular mycorrhizae, saprophytes) Protozoa

undifferentiated microorganisms

F	PLFA Soil M	licrobial	Community Analysis	5
Total Living Microbial Bion Functional Group Diversity	nass, Phospholi / Index	pid Fatty Ac	id (PLFA) ng/g	5021.18 1.581
	Total Biomass	Diversity	Rating	
	< 500	< 1.0	Very Poor	
	500+ - 1000	1.0+ - 1.1	Poor Slightly Balaw Average	
	1500+ - 2500	1.1+-1.2		
	2500+ - 3000	1.2+ - 1.4	Slightly Above Average	
	3000+ - 3500	1.4+ - 1.5	Good	
	3500+ - 4000	1.5+ - 1.6	Very Good	
Functional Group	- 4000	1.0	Biomass, PLFA ng/g	% of Total Biomass
Total Bacteria	-		1881.75	37.48
Gram (+)			1182.99	23.56
Actinomycetes			358.71	7.14
Gram (-)			698.76	13.92
Rhizobia			50.72	1.01
Total Fungi			399.36	7.95
Arbuscular Mycorrhizal			123.64	2.46
Saprophytes			275.72	5.49
Protozoa			45.75	0.91
Undifferentiated			2694.32	53.66

Biological Indicators – OSU Lab

2Yr CC 10Yr LT CC LT CC Hay

Microbial basal respiration (lbs/ton/day)

Specific maintenance respiration (mg/g/day)

(C catabolized per unit of microbes)

Analysis by OSU Lab

Analysis by Ward Lab

Overall Soil Health Score

Sampling is the key

Separate samples should be collected whenever there is a difference in soil type or Management

Soil biological activity etc. are sensitive to moisture and temperature and so collect samples at similar times each year

Do not sample saturated soils Carbon stock calculations require

both SOC and bulk density to a depth of 30 cm

Figure 1. Diagram of a composite of soil cores for a point sample (left and a composite of soil cores for zone sampling .

Sample same locations every time Soil Properties Bio Chem Phys 50 Spatial variation Spatial (a) and temporal (b) 30 20 variation calculated at each SHP member site for biological, chemical, and physical soil health indicators emporal variation (% 50 40 30 20

https://www.soilhealthpartnership.org

Soil health tests should provide consistent, reliable results (be reproducible), and they should measure important attributes of soil functions that respond relatively quickly to management.

Authors Stacy Zuber and Eileen Kladivko

Purdue Agronomy ag.purdue.edu/AGRY

How to Understand and Interpret Soil Health Tests

Soil health has received increased attention during the past few years — and for good reason. The U2DA-Natural Resources Conservation Service (NRCS) defines soil health as the "capacity of the soil to function as a vital, living ecosystem that sustains plants, animals, and humans."

It is important for us to protect and improve the soil health on our agricultural lands for both short- and long-term productivity. Soil health matters to farmers, consumers, and society as a whole. So clearly, finding ways to improve soil health on our nation's croplands should be a high priority. intervines many aspects that function together as a system: soil biology, fortility/ chemistry, and physical properties. Ideally, we would have a few simple measurements that indicate a field's current level of soil health. And these measurements would help us identify management practices to increase the soil health. A soil health test should be much like a

But the question of how to adequately

measure soil health arises. Soil health

"wellness exam" for human health that finds areas that need some attention and provide us with an overall "health rating." In the same way, a soil health test should identify areas

McClarren Farm, NW Ohio Sampling date: 10/25/2022

Total Contractional additionale and its consistent of the second second pro-

26 Tons Diviacre

1.3 Tons DM/acre C:N ratio of 19.6

After

Before

Photos by Alan Sundermeier (Oct. 2022)

Plant / Cover crop Tissue Testing

Cover crop planted	8/12/2022	Nutrient	Nutrient Content	Nutrient Price	Nutrient Value
A. Winter Pea			lb/acre	\$/lb	\$/acre
Cow Pea	9 lb/a	Carbon	11/6	\$0.02	¢77 Q7
Balansa Clover	0.72 lb/a	Nitrogen	58	\$0.02	\$22.32
Med Red Clover	1 lh/a		50		
	1 10/0	Phosphorus P205	9.7	\$0.50	\$9.33
Berseem Clover	1.25 lb/a	Potassium K2O	62.1	\$0.44	\$45.54
Crimson clover	2 lb/a	Calcium	18.7	\$0.03	\$1.48
Oats	6 lb/a	Magnesium	5.8	\$0.03	\$0.29
Cereal Rve	12 lb/a	Sulfur	3.1	\$0.55	\$1.89
	\$26.41 /acro	Zinc	0.047		\$143 59
TOTAL COST	930.41 /acre	Iron	0.514	TOTAL VALUE	ý±43.33
McClarren Farm (Sand A Field), NW Ohio		Manganese	0.067		/acre
31st Annual		Copper	0.014		
	tter Vexap	Boron	0.028		
CONFERENCE	Solu	Molybdenum	0.005		
January 10-13, 2023 • St. Louis, Mo.	Ig Leader ® V Pla	Aluminum	0.322		

McClarren Farm (Sand A Field), NW Ohio

Cover crop planted	8/12/2022	sample date	10/25/2022		
A Winter Pea	10 lb/a	Nutrient	Nutrient Content	Nutrient Price	Nutrient Value
	1010/0		lb/acre	\$/lb	\$/acre
Cow Pea	9 lb/a	Carbon	1146	\$0.02	\$22.92
Balansa Clover	0.72 lb/a	Nitrogen	58	\$0.30	\$62.14
Med.Red Clover	1 lb/a	Phosphorus P2O5	9.7	\$0.50	\$9.33
		Potassium K2O	62.1	\$0.44	\$45.54
Berseem Clover	1.25 lb/a	Calcium	18.7	\$0.03	\$1.48
Crimson clover	2 lb/a	Magnesium	5.8	\$0.03	\$0.29
Oats	6 lb/a	Sulfur	3.1	\$0.55	\$1.89
Cereal Rve	12 lb/a	Zinc	0.047	TOTAL VALUE	\$143.59
		Iron	0.514		
TOTAL COST	\$36.41 /acre	Manganese	0.067		
		Copper	0.014		
		Boron	0.028		
		Molybdenum	0.005		
		Aluminum	0.322		
		Tons DM/acre	1.26		
		C:N ration	19.6		

Take home message

Treat soil health testing as your own "wellness testing" Choose tests based on where you are at in your transition to no-till Stick to simple measurements Pay for \$\$ tests – they will pay off!! Find a university/research/non-research friend!

Questions?

VINAYAK SHEDEKAR Shedekar.1@osu.edu | soilhealth.osu.edu

SARE PROJECTS

LNC20-439 ("Soil health and water quality nexus in sustainable agroecosystems")
ONC18-047 ("Making sense of Soil Health Reports – A partnership to develop recommendations for soil health testing, interpretation")

Podcast: https://www.soilhealthpartnership.org/podcast/10 -wayne-honeycutt-farmer-adoption-of-best-soilhealth-practices-is-key/ Wayne Honeycutt, Farmers and Soil Health

farmers need practical, effective measurements for assessing the current status of their soil and evaluating progress at improving its health

topsoil depth water infiltration plant residue and signs of erosion root health soil aggregate stability

Simple measures

topsoil depth water infiltration plant residue and signs of erosion root health soil aggregate stability

Turning over a vigorous ryegrass, hairy vetch, oat cover crop blend prior to planting tomatoes in Davis, CA.

SOIL HEALTH SERIES

Assessing Soil Health: Putting It All Together

By Cristine Morgan, Ph.D., and Shannon Cappellazzi, Ph.D., Soil Health Institute

The following article is the last in a six-part series on assessing soil health. It synthesizes measurement information and provides an example of how a minimal set of soil health measurements can reflect multiple aspects of soil functioning. It is part of a larger Soil Science Society of America webinar series produced in partnership with The Soil Health Institute and sponsored by The Walton Family Foundation. Earn 0.5 CEUs in Soil & Watter Management by reading the article

and taking the quiz at www.certifiedcropadviser.org/

DOI: 10.1002/crso.20125

education/classroom/classes/1010. 64 Crops & Soils Magazine | July-August 2021

American Society of Agronomy

No-Till/Cover Crop Research in Ohio Can Long-Term Soil Health Practices Improve Water Quality?

Vinayak Shedekar

Dept. of Food, Agricultural and Biological Engineering The Ohio State University, Columbus, Ohio

Will Osterholz

USDA-ARS Soil Drainage Research Unit

Columbus, Ohio

Edge-of-field water quantity and quality monitoring

Solar panel Rain gauge

CFAES

V-notch weir

Flow meter Automated water sampler Battery and heater H-flume

sandy loam and loam

Preliminary findings suggest that long-term soil health practices improve water quality:

- Less volume of water discharge through both tile drainage and surface runoff
- Lower concentrations and losses of nitrate
- Lower DRP and TP losses, despite greater DRP and TP concentrations in surface runoff
- <u>Working hypothesis</u>: Some of the water quality benefits of LT-SH may be attributed to the inherently lower input requirement and associated soil and residue management
- For conclusive evidence ... **long-term monitoring** is crucial

