

How to Use Precision Technology to Make Data-Informed Decisions

Keith Wendte

Discussion Topics

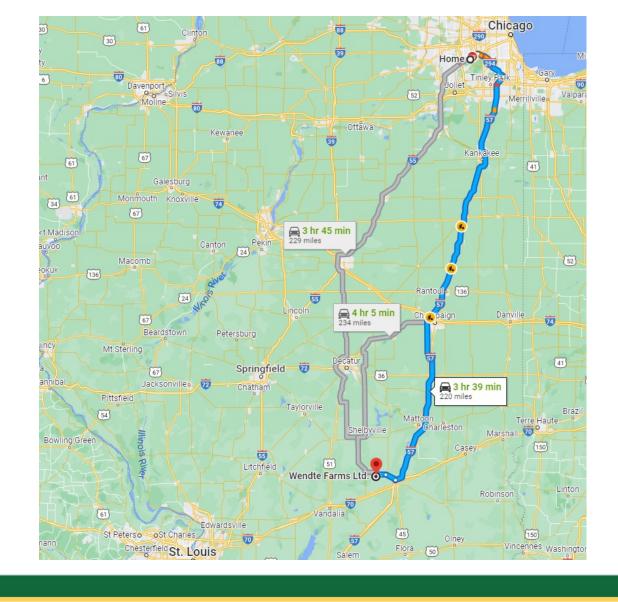
- History/Background
- Farm operation
- Data management
 - Data formats
 - Types & usage
 - Digital platforms & storage Solutions
 - Soil test methodology
 - VRT fertilizer prescriptions
- Data analysis examples
- Plot design
- Metrics used for evaluating farm operation
- Questions

History/Background

- Grew up on the farm
- BS/MS Agricultural Engineering University of Illinois
- 37 Years with IH/Case/CNH Burr Ridge, IL
 - Test, Reliability, Design and Innovation Groups
 - Tractors, combines, tillage, planters, precision ag
- Currently live in the SW suburbs of Chicago
- Farm responsibilities include:
 - Collecting & organizing data
 - Data analysis
 - Creation of application maps
 - Aid in planning for next season

Farm Operation

- 7,000-acre grain farm located in Effingham county (90 miles east of St. Louis)
- Subchapter S corporation, owned by 3 generations of family members
- Operated by 6 family members, 1 full time employee and seasonal help
- Corn, soybeans, winter wheat & double crop soybeans
- **Precision ag products**
 - 1994 Yield monitor
 - 1997 GPS & Grid soil sampling
 - 2005 VRT fertilizer application
 - 2012 Auto guidance w/RTK
 - 2020 High speed planter with individual shutoff row units on 20" rows
 - 2023 Drone (Future)



Farm Location

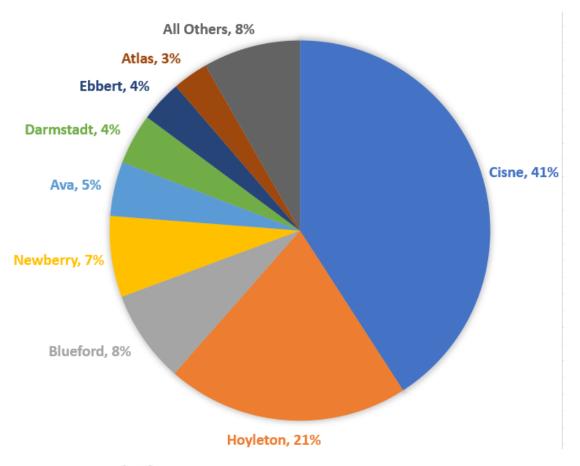
220 Miles 3.5 Hour Drive

"No Problem"



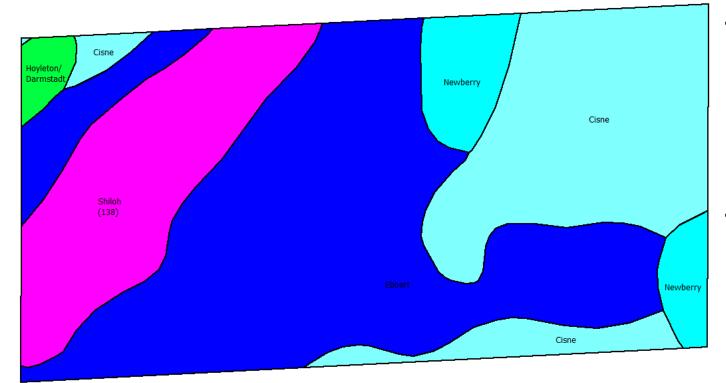
Wendte Farms Ltd

Family & Farm Crew



Wendte Farms Soil Types

- 76% of the soil types are either Cisne, Hoyleton, Bluford or Newberry, 0-2% slope
- Classified as silty loam, 2-3% OM
- Corn productivity index average 119 120
- Claypan at 12" 18" depth
- Poorly drained, requires surface drainage



Two Examples of Soil Types

- Shiloh
 - 140 Corn Productivity Index
 - 37% Clay, 55% Silt, 8% Sand
 - 2021 Corn yield +13 bu/acre over Cisne soil type in 2021
- Cisne
 - 119 Corn Productivity Index
 - 15% Clay, 79% Silt, 6% Sand
 - 2020 Corn yield +23 bu/acre over Shiloh soil type
 - 2.7" more rain in July, 2020 vs July, 2021

Data Management – Sources & Transmission

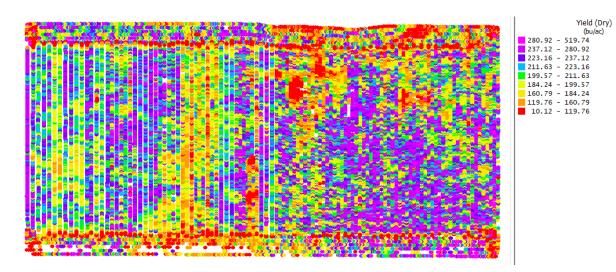
- USB flash drives uploaded to Dropbox
- Telematic data transfer (Climate FieldView, AFS Connect)
- Web based data
 - Rainfall/field health images (Climate FieldView, Intellicast, satellite, etc)
 - Soil test laboratory
 - Aerial applied fungicide/insecticide
 - FSA maps
 - Soil type
- Field survey records (courthouse records)
- Scouting (iPad FieldView)
- Images from drone camera

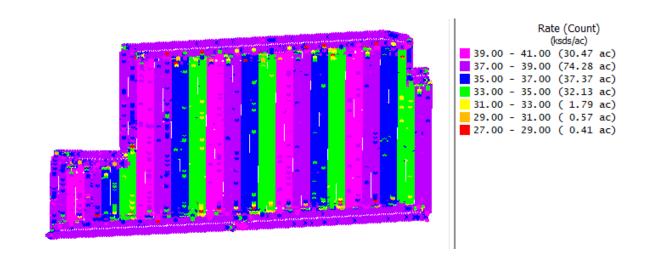
Data Format Imports/Exports

- CaseIH .yld, .vyg, .ens, .cn1, ISO XML
- Ag Leader .ilf, .irx
- AGCO .shp
- Trimble .fld, .agf
- Precision Planting .dat
- Agri-Spray Drone .kml
- Kuhn Litter Spreader .rds
- Soil test laboratory .txt, .csv
- Images .jpg, .gif, .png, bmp

Digital Platforms & Storage Solutions

- AFS Connect Farm Cloud Storage (Harvest, Spraying, Anhydrous)
- Climate FieldView Cloud Storage (Harvest, Planting, Spraying)
- Farm Business Network Harvest & Planting Data uploaded at end of season
- Ag Leader SMS Basic All data; used for plot analysis 90 GB of data
- Raw Data Files
 - Microsoft OneDrive All data; Auto syncs with hard drive; \$100/year, Software for 5 computers
 - Computer solid state hard drive (safer & faster vs mechanical hard drives)
 - 2 TB Passport external drive used for backup
 - Set up for automatic backup
 - Stores old versions of data file in case of a "whoops" moment
 - Dropbox Free limited temporary storage; also used to transfer files that are too large for email

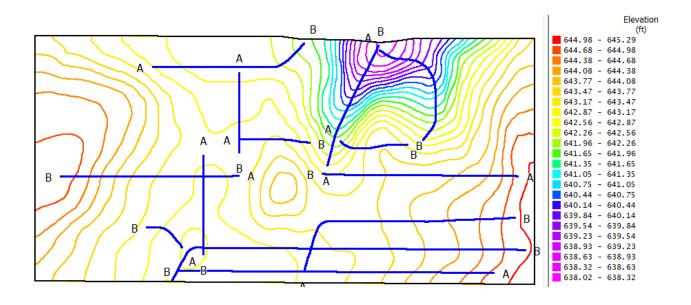


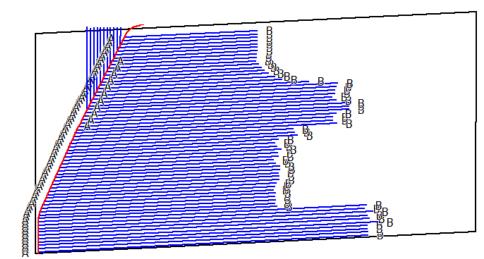


Types of Data & Usage

Yield Map – Plot Data Analysis

Crop Inputs As-Applied – Plot Data Analysis

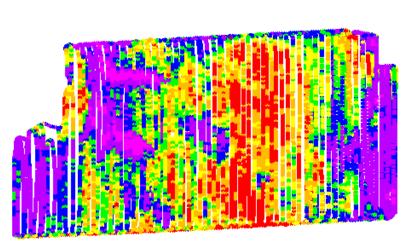


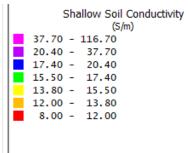


Types of Data & Usage

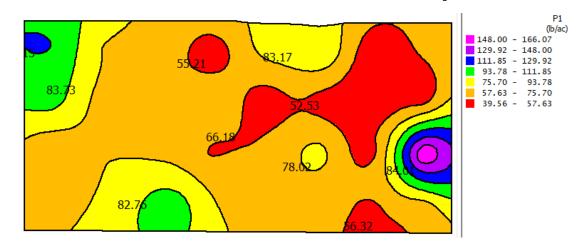
Elevation Contour Maps Locate Surface Drainage Ditches

Tile Line Location **Used for repairing tile line** failures & calculating ROI

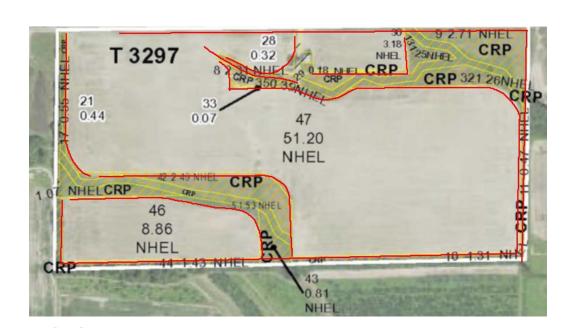

Types of Data & Usage

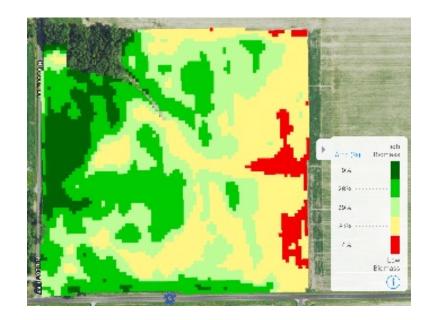

Soil Conductivity (Veris)

Soil Test Results


Fine Tune Soil Type Maps

Fertilizer & Lime VRT Maps



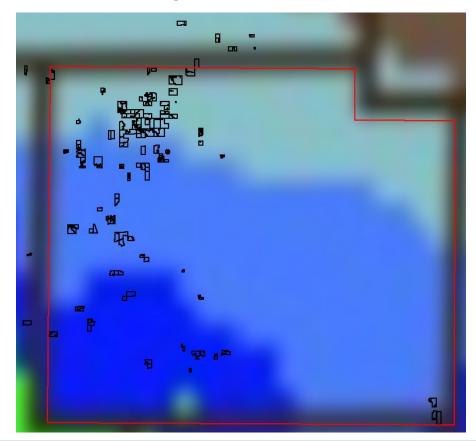


Types of Data & Usage

FSA Maps - CRP - AB Lines)

Field Health – Evaluation of "Fixes"

Types of Data & Usage


Geo Referenced Precipitation Map

(Intellicast Web Site)

Mid - August Rainfall

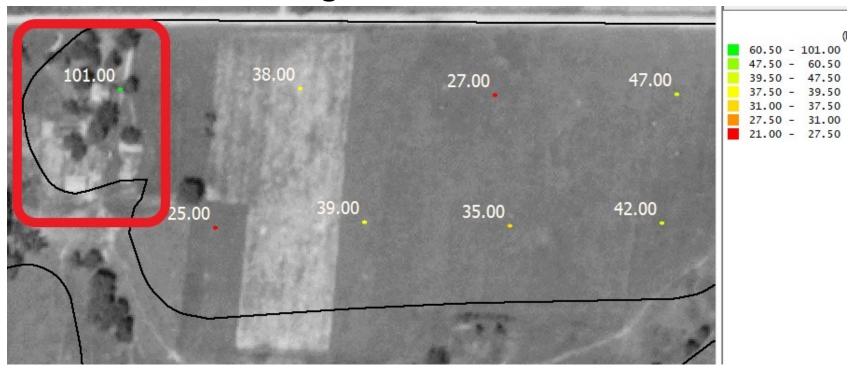
Dark Blue = 1.0"

Light Blue - <.25"

Types of Data & Usage

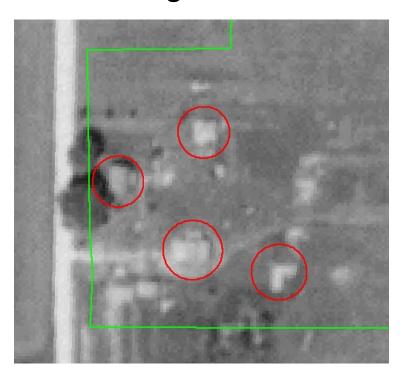
2020 P Soil Test – Unexplained High Test

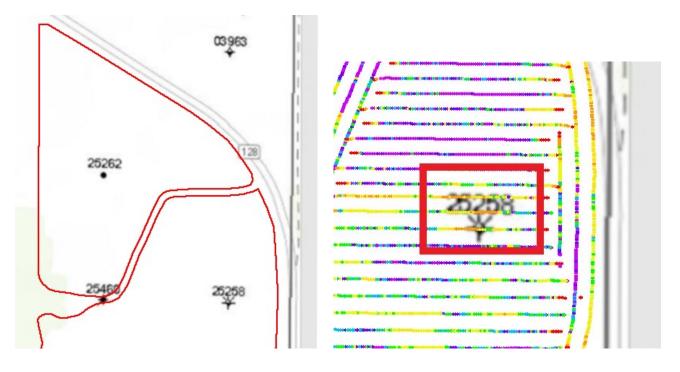
Sound ?



Types of Data & Usage

Image From 1938

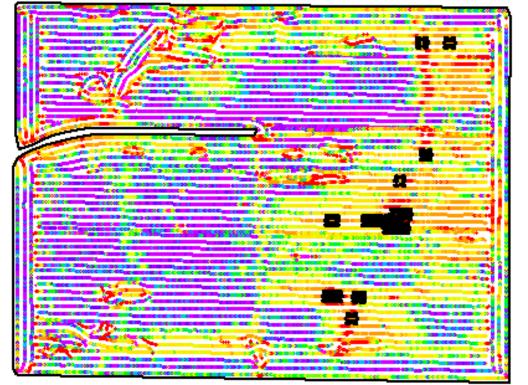


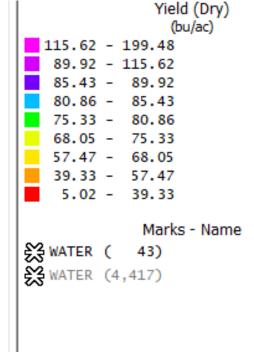


Types of Data & Usage

Old Building Foundations

Abandoned Oil Wells

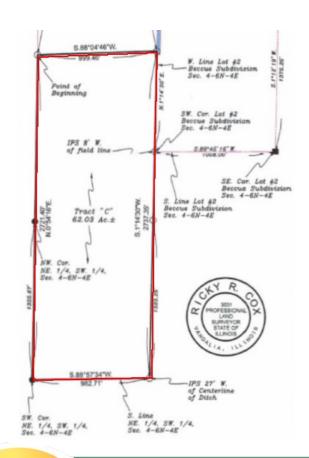




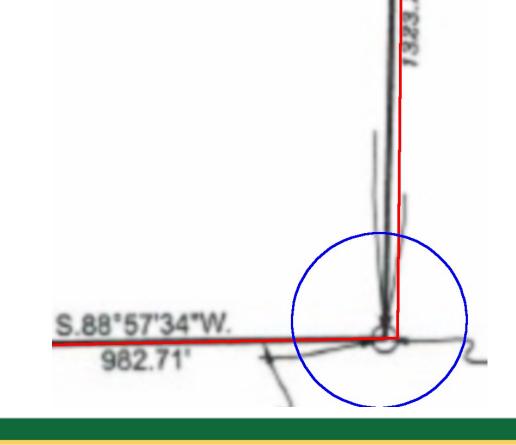
Types of Data & Usage

Wet Spots Tagged During Harvest Locate Surface Ditches

MonTag



Types of Data & Usage



Survey Maps

20' Discrepancy

1/2 Mile Ends

1.3 Acres

Types of Data & Usage

- Tillage treatments
- Scouting (rock, weeds, obstacles, etc)
- In season tissue sampling
- Aerial images after a heavy rain (reflection)

exapta.

Soil Tests Methodology

- 2.5 acre grids
- Always done in the fall after soybean crop
- Use the same lab for analysis
- Every 2 years on fields receiving chicken litter applications
- Every 3 years for Soybean/Wheat-Double Crop Soybean/Corn rotation
- Every 4 years for Soybean/Corn/Soybean/Corn
- Use University of Illinois goals for P, K, Lime, Micronutrients
- Use spreadsheet to calculate fertilizer requirement
- Import soil test data and fertilizer requirement into Ag Leader SMS database
- Use SMS to create prescription maps

VRT Fertilizer Prescriptions

Year of Soil Test (Every 3-4 Years)

Goal – Test Result + Catchup + Next year crop requirement

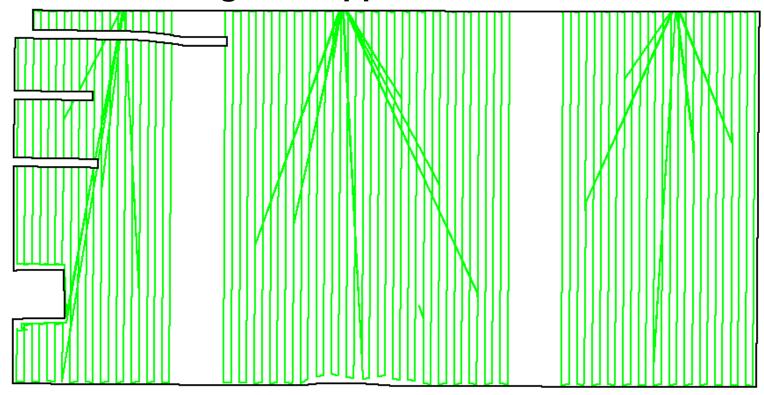
2-4 Years After Soil Test

Goal – Test Result + Catchup + Previous Crop(s) Usage – Fertilizer applied +

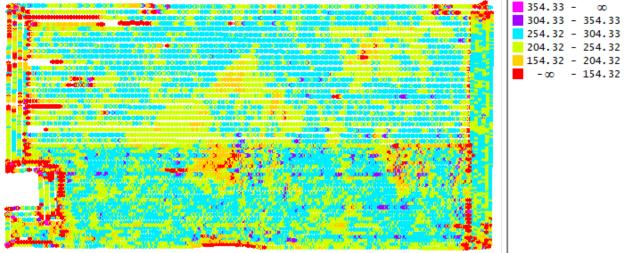
Next year crop requirement

Typical Soil Test Map & Prescription (P Goal = 70 lb/acre)

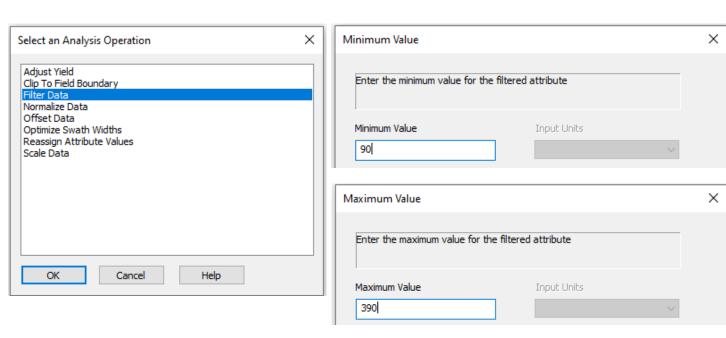
Sound ?

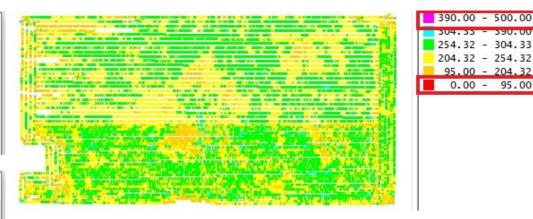


Fungicide Application Evaluation

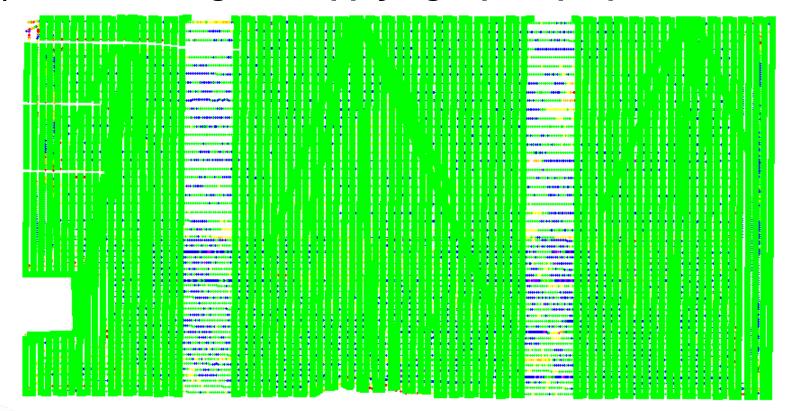


1) Locate extraneous data (3 std dev)

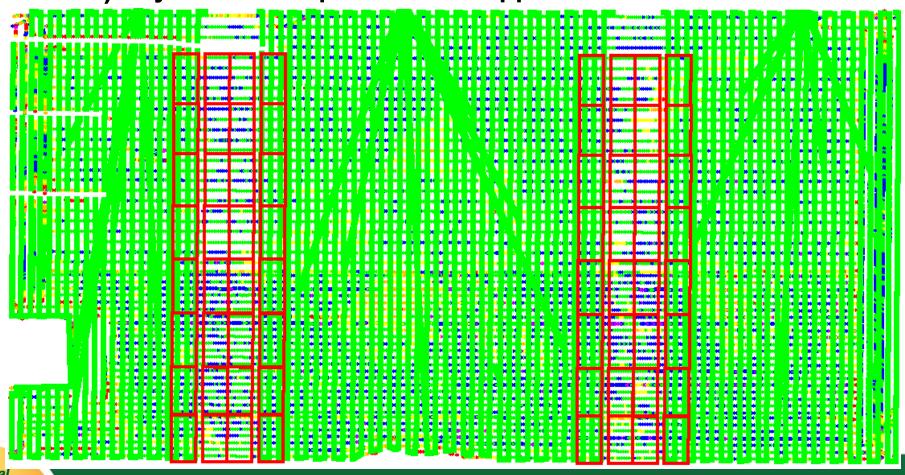




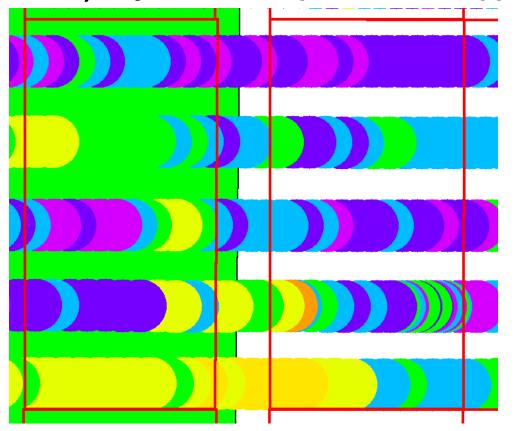
2) Eliminate extraneous data (3 std dev)



3) Add the as-applied layer (Drone) over yield map (Note advantages to applying inputs perpendicular to rows)



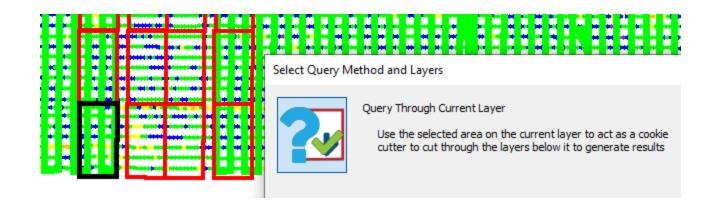
4) Layout subsample areas for applied area vs control area



4) Layout subsample areas for applied area vs control area

Green Area = Treated area White Area = Untreated

Leave gap between subsample areas in order to allow for yield lag from the yield monitor.

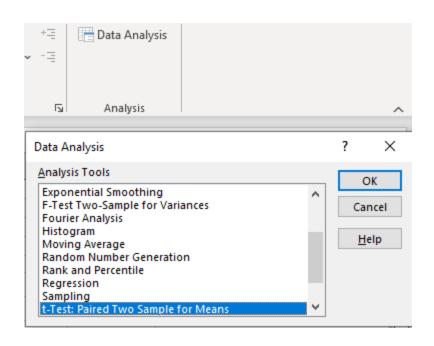


5) Select subsample area and choose "Query Through Current Layer" Repeat for all remaining subsample areas

Layer 3 - Harvest - 1 Corn 2022 Main Layer					
Length	508.61 ft				
Count	88				
Description	Average	Total	Minimum	Maximum	
Yield (Dry)	252.02 bu/ac	53.72 bu	161.63 bu/ac	304.00 bu/ac	
Moisture	17.92 %	The second second	16.10 %	19.50 %	
Elevation	616.54 ft	_	615.05 ft	617.73 ft	

Vel	Veltyma+Baythroid (7/18/22)				
Control	ntrol Group Fungicide/Insecticide			Yield	
Yield	Moisture	Yield Moisture		Advantage	
262.07	17.63	256.52	17.58	5.55	
259.03	17.39	258.21	17.53	0.82	
262.25	17.12	257.53	16.95	4.72	
262.26	16.67	252.78	16.81	9.48	
257.07	16.77	247.52	17.11	9.55	
258.47	17.10	254.28	17.17	4.19	
256.13	17.25	243.14	17.34	12.99	
243.04	16.88	239.84	16.06	3.20	
267.08	17.05	261.04	17.03	6.04	
247.38	16.74	256.32	16.95	8.94	
261.18	17.59	254.32	17.74	6.86	
252.72	17.67	261.65	17.89	8.93	
261.77	18.02	262.97	17.84	1.20	
255.91	17.89	262.85	18.01	6.94	
241.80	17.55	252.02	17.92	10.22	
248.30	17.90	260.77	18.20	12.47	
245.66	16.36	259.68	17.03	14.02	
243.61	16.07	221.63	15.80	21.98	
252.63	15.95	269.10	17.59	16.47	
223.53	16.06	236.41	16.31	12.88	
249.90	17.75	261.92	17.58	12.02	
256.94	17.62	261.20	17.58	4.26	
246.94	17.46	257.44	17.44	10.50	
262.67	17.87	255.38	18.14	7.29	
245.24	16.92	272.43	272.43 17.44		
267.03	17.12	264.75	16.89	2.28	
255.25	17.99	255.44	18.27	0.19	
257.97	18.12	267.77	18.43	9.80	
256.88	17.63	250.66	17.91	6.22	
245.28	17.38	267.90	17.74	22.62	
238.90	17.11	245.01	17.58	6.11	
251.14	17.23	257.82	17.80	6.68	
253.00	17.25	255.82	17.43	2.82	

6) Transfer query data to Excel spreadsheet

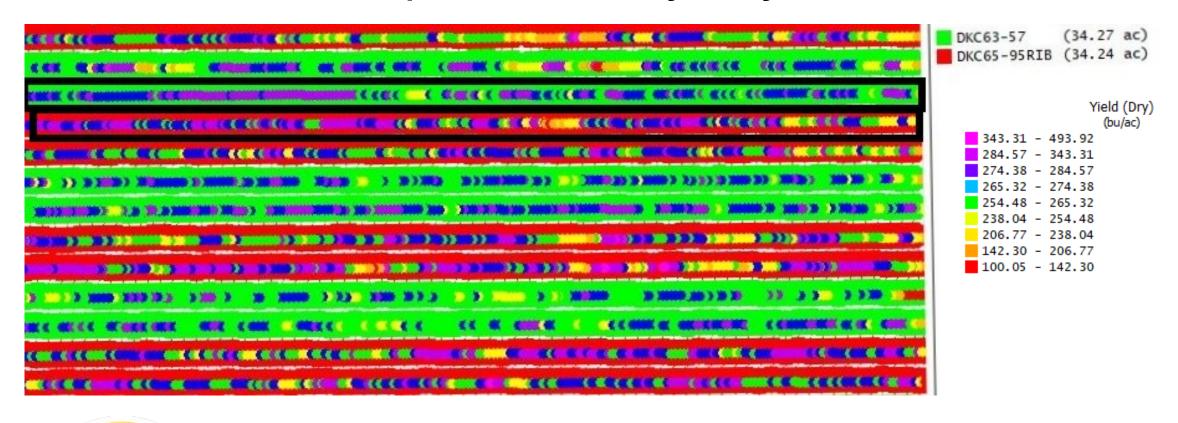


Data Analysis Example

7) Use Excel Data Analysis Add-On to analyze data and produce Analysis of Variance Table (Using t-test, α=.15, 70% CL)

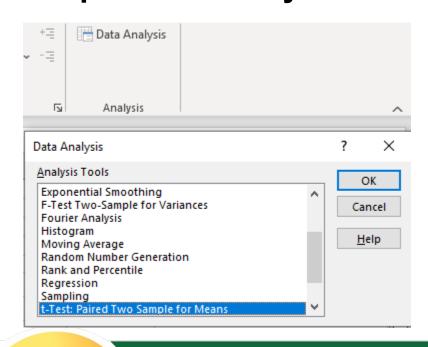
	Variable 1	Variable 2
Mean	255.949118	253.2332353
Variance	101.29073	83.94151346
Observations	34	34
Pearson Correlation	0.38397345	
Hypothesized Mean Difference	0	
df	33	
t Stat	1.48046529	
P(T<=t) one-tail	0.07411709	
t Critical one-tail	1.05297898	
P(T<=t) two-tail	0.14823418	
t Critical two-tail	1.47384307	

If t Stat > t Critical one-tail, then the difference in averages is statistically significant at the 70% confidence level.



Data Analysis Example

Split Planter Variety Analysis



Data Analysis Example

Split Planter Variety Analysis Use Excel Data Analysis Add-On to analyze data and produce Analysis of Variance Table (Using t-test, α =.30, 70% CL)

If t Stat > t Critical two-tail, then the difference in averages is statistically significant at the 70% confidence level.

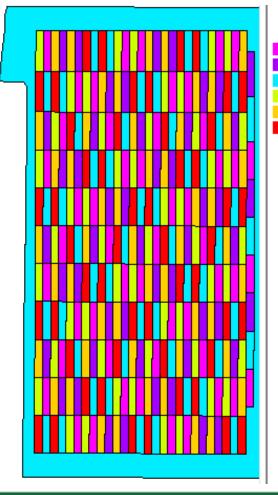
t-Test: Paired Two Sample for Means				
erson y term	Variable 1	Variable 2		
Mean	265.28	263.0253333		
Variance	361.1486	199.0146981		
Observations	15	15		
Pearson Correlation	0.89881658			
Hypothesized Mean Difference	0			
df	14			
t Stat	0.98727996			
P(T<=t) one-tail	0.17013104			
t Critical one-tail	1.07628024			
P(T<=t) two-tail	0.34026207			
t Critical two-tail	1.52309506			

Data Analysis Summary Table

		Avg Yield		# Stat	Input	Labor & Appl	Gross \$	Net Return
Inputs/Plot Trials	Variety	Adv (Bu/Acre)	#Tests	Test Sig	Cost/Acre	Cost/Acre	Gain/Acre	Per Acre
Early Planted Corn	Various	53.32	53	0	\$0.00	\$0.00	\$ 399.90	\$399.90
Tile	All	14.60	5	5	\$0.00	\$0.00	\$109.50	\$109.50
10% Higher Pop on Outside Rows	Various	13.27	8	0	\$7.67	\$0.00	\$99.53	\$91.86
Increased Nitrogen	DKC 66-18 RIB	15.10	1	1	\$29.00	\$7.00	\$113.25	\$77.25
Additional 50#/acre of NH3	DKC 66-18 RIB	9.83	1	1	\$12.50	\$0.00	\$73.73	\$61.23
10% Higher Population	DKC 63-57 RIB	7.61	3	2	\$10.83	\$0.00	\$57.08	\$46.25
Dust Seed Trmnt	DKC 60-80 RIB	5.46	4	4	\$0.05	\$0.00	\$40.95	\$40.90
Corn Variety	Various	4.40	19	10	\$0.00	\$0.00	\$33.00	\$33.00
Magma Hume	Various	2.60	3	3	\$18.00	\$0.00	\$19.50	\$1.50
Foliar Fertilizer	DKC 63-91 RIB	0.56	1	0	\$3.00	\$0.00	\$4.20	\$1.20
Additional AMS & Urea	DKC 70-27 RIB	4.77	1	0	\$28.65	\$7.00	\$35.78	\$0.13
VRT vs Fixed Population	Various	(0.42)	5	1	\$11.64	\$0.00	(\$3.15)	(\$14.79)
Seed treatment	DKC70-27 & 67-44	(1.32)	3	0	\$5.00	\$0.00	(\$9.90)	(\$14.90)
V6 Fertilizer Y-Drop Treatmnet	DKC 66-18 RIB	6.53	1	1	\$92.31	\$0.00	\$48.98	(\$43.34)
ATS & 0-0-20 (Melted 0-0-60)	DKC 64-65RIB	(3.01)	1	0	\$25.04	\$5.00	(\$22.58)	(\$52.62)
In Furrow Fertilizer	DKC 63-91 RIB	(4.37)	3	2	\$32.40	\$0.00	(\$32.78)	(\$65.18)

Plot Design 101

- Choose a field that is relatively uniform
- Avoid waterways, old farmsteads, areas prone to flooding, etc
- Try to make plot width equal to combine header width; if cannot do that, make sure plot width is at least twice the width of the header
- Randomize within a block
- Replicate at least 4 blocks across the field, preferably more
- More replications make it easier to find statistically significant differences
- If possible, apply crop input perpendicular to rows or harvest diagonally
 - Negates the multiple combine effect
 - Negates wheel track, tillage pass and fertilizer variation effects
 - Multiple varieties possible



Plot Design Example

Plot layouts Data-Intensive Farm Management (DIFM) Project University of Illinois 2017 – 2022

- Soybean plots = 42.5' x 200' plots (.21 acres)
- 45' Grain Platform
- 60' Planter with individual row unit population control
- Soybeans Population
- Corn Population + Nitrogen

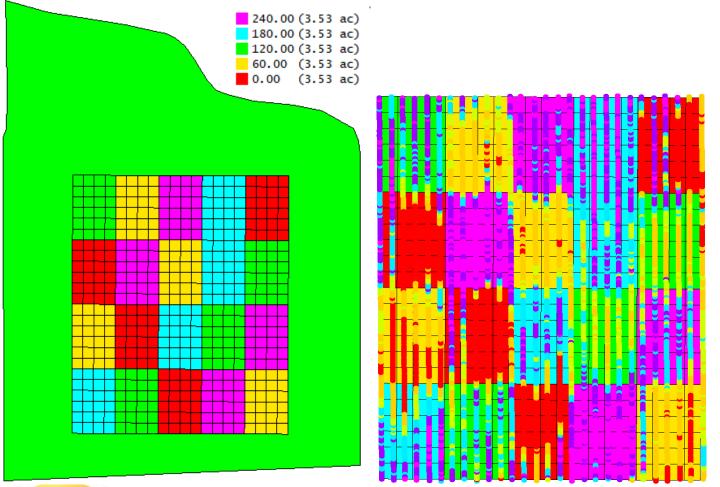
Target Rate (Count) (ksds/ac) .80 ac)

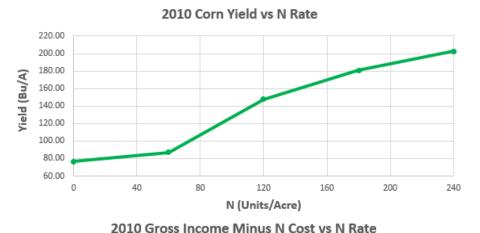
160.0 (10.80 ac) 145.0 (10.61 ac)

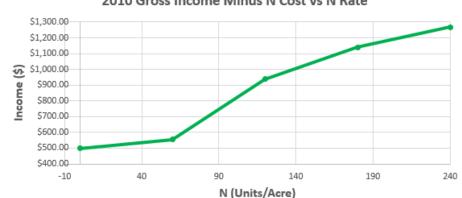
130.0 (25.77 ac) 115.0 (10.80 ac)

103.0 (10.80 ac)

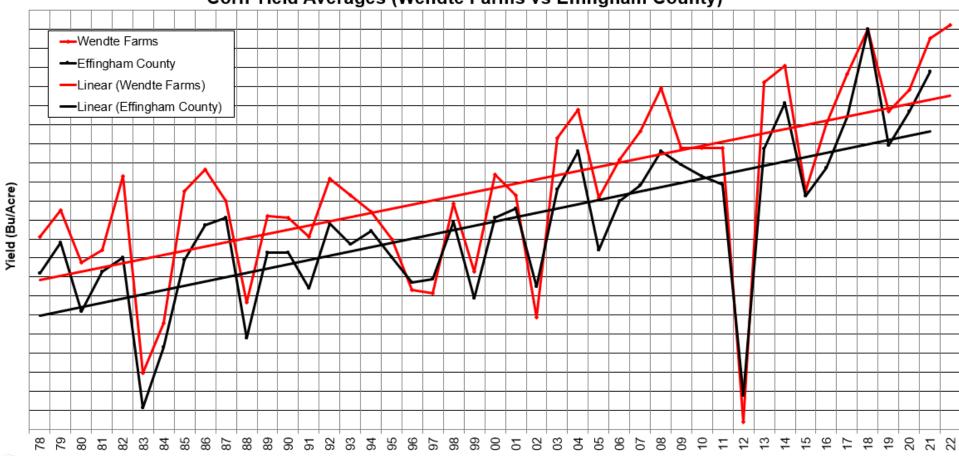
90.0 (11.02 ac)





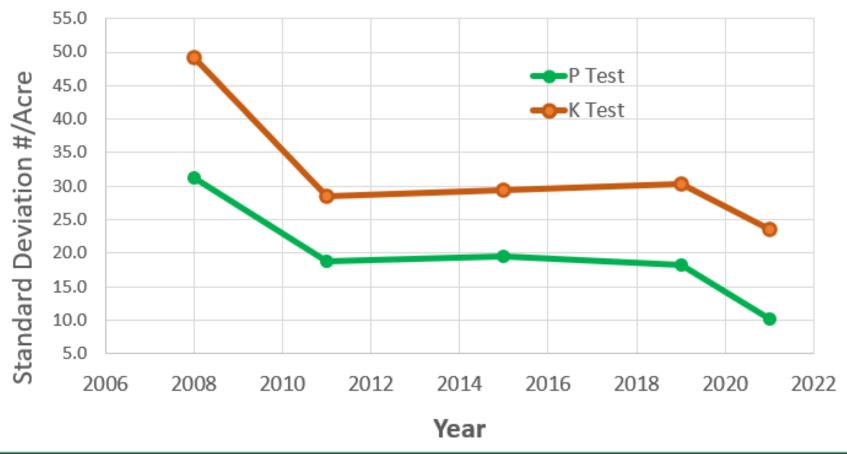


Plot Design Example (2010)



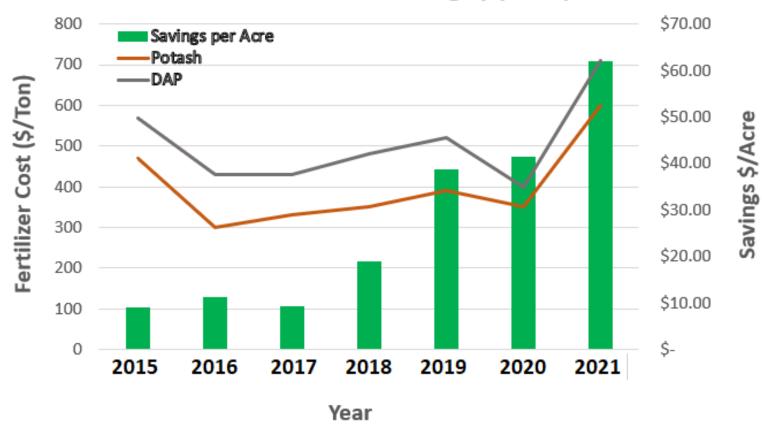
Metrics

Corn Yield Averages (Wendte Farms vs Effingham County)



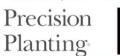
Metrics

Standard Deviation of Soil Tests



Metrics

VRT vs Flat Rate Savings (\$/Acre)



Useful Web Sites

Illinois Plat Books by County

https://idaillinois.org/digital/collection/IllinoisPlats/search/

1937-1947 Illinois Historical Aerial Photography

https://clearinghouse.isgs.illinois.edu/data/imagery/1937-1947-illinois-historical-aerial-photography

FSA

https://www.fsa.usda.gov/online-services/farm-plus/index

Precipitation Map

https://www.wunderground.com/maps/precipitation/daily/spi

Illinois Oil Wells

(http://maps.isgs.illinois.edu/ILOIL/)

Questions

