Beating Glyphosate Resistant Weeds by Planting Green

Jim Stute 2023 National No-Till Conference St. Louis, MO

About me ...

Past Affiliations: UW-Extension, Michael Fields Institute

Member: Watershed Protection Committee of Racine County (PLWPG)

Wisconsin NRCS Soil Health Committee

Wisconsin Association of Professional Crop Consultants

Cover crop research/outreach since 1989 **Current topics**

Yield effects/ economics

Weed suppression

Conservation crediting/ SnapPlus NM software

SARE Program Support

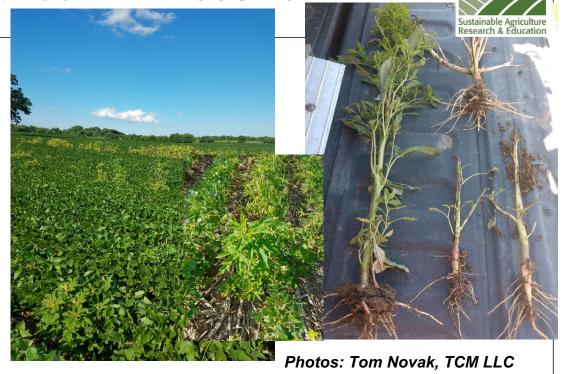
Farmer/ Rancher Partnership Research and Education **Professional Development** Graduate Student

My farm ...

Home farm ~160 acre, former dairy
Fox silt loam, A-C slopes, HEL, gravel substratum
Continuous no-till since 2003
Rental ground treated the same as owned

Purpose driven cover crop use since 1994

Red clover interseeded in wheat- N Cereal rye after corn- N scavenging 2022->rye on all acres for soil water management



Glyphosate resistance in Wisconsin

Can planting green suppress GT/RW?

SARE Project ONC17-034

"Do cover crops pay?"

Oak Hill, 2019

Kidder sandy loam, 2% OM; rye, 40 lb./a, Oct 18

Planned Termination: May 6 Cover, 21.8%, AGB, 150 lb./a

Actual Termination: May 30 Cover, 64.1%, AGB, 1,434 lb./a

Cover vs. no cover

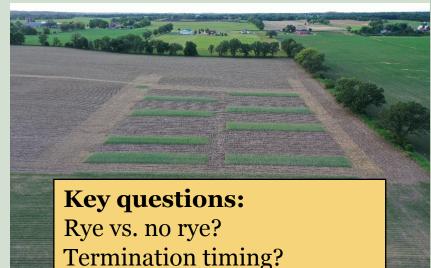
+1.8 bu./a, 3.7%

In-season observation: no waterhemp in rye

SARE Partnership Project ONC21-094

Hybrid "on-farm" Trial: 2-year, 4 location, 4 replicates per site

Control


no rye, total burndown + residual (Sulfentrazone + Chloransulam-methyl) UW-Extension recommendations

"Burndown" (preemergence, PRE)

rye (40, 80 lb./a), same herbicide

"Plant Green" (post emergence, POST)

rye (40, 80 lb./a), bdlf. burndown + residual

Rye seeding rate?

SARE Partnership Project ONC21-094

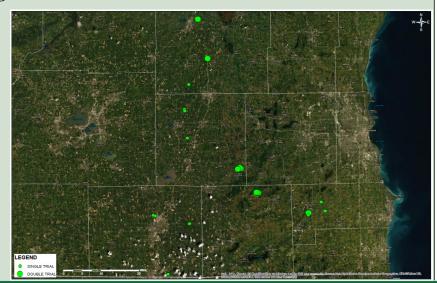
Cooperators:

Tom Novak, Pleasant Valley Acres/ Total Crop Management LLC

Nick Kau, Kau Farms

Tyler Troiola, Troiola Enterprises

Tom Burlingham, Langmanor Farms

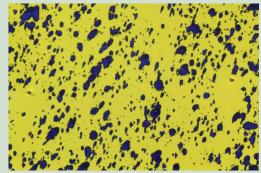

Southeast Wisconsin:

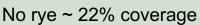
23" Growing season precipitation (39" annual)

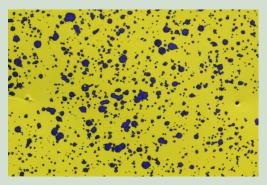
2,560 GDD (April- September)

Corn, 102-105 RM

Soybean, 2.1-2.5



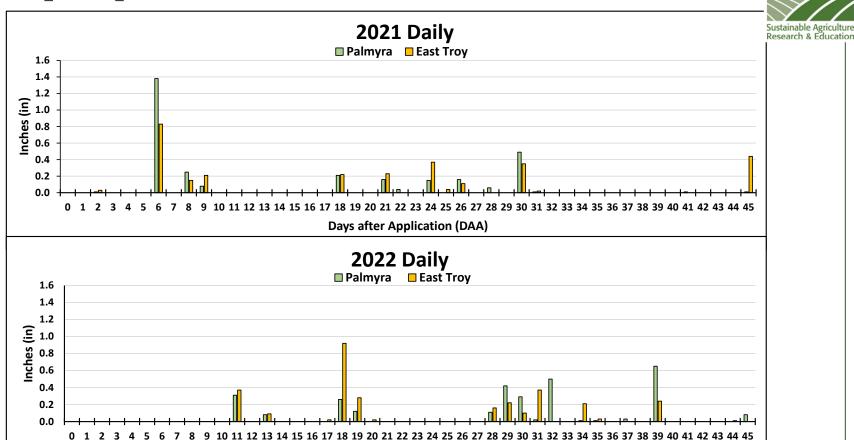


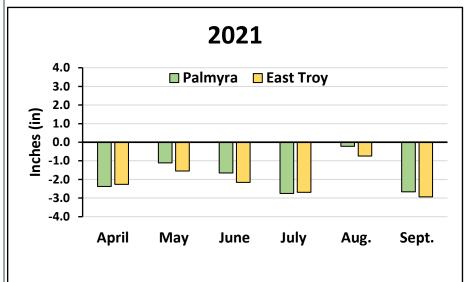

What about spray interception?

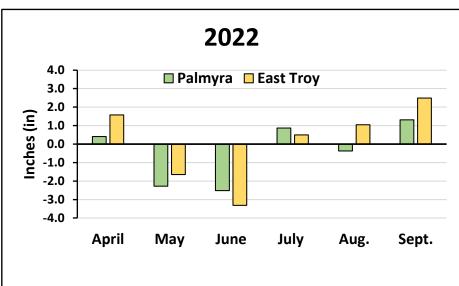
Caution urged by several midwestern Universities Documented in later terminated rye, AGB ~ 4,000 lb./a

Rye ~ 12% coverage

Spray card data and photo credit: WiscWeeds, Dr. Rodrigo Werle

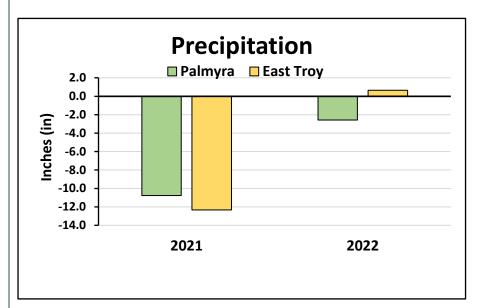


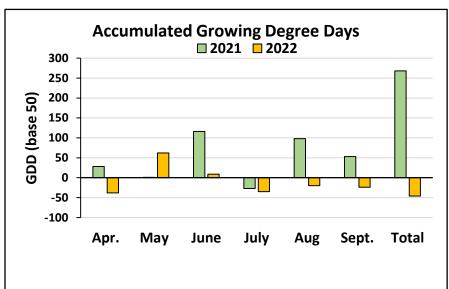

Critical precipitation: residual herbicide activation



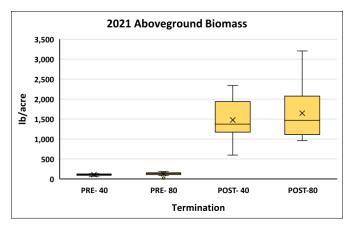
Days after Application (DAA)

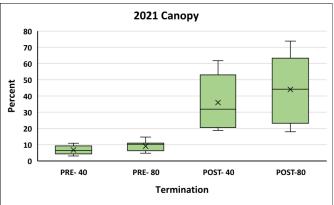
Monthly precipitation: departure from long-term mean

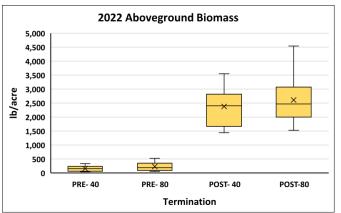


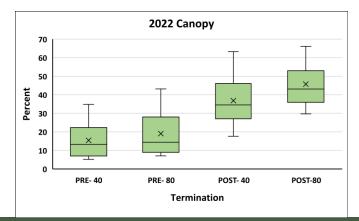


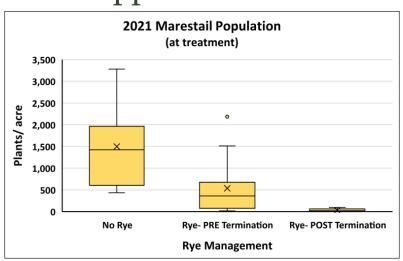
Seasonal precipitation and temperature: departure from long-term mean



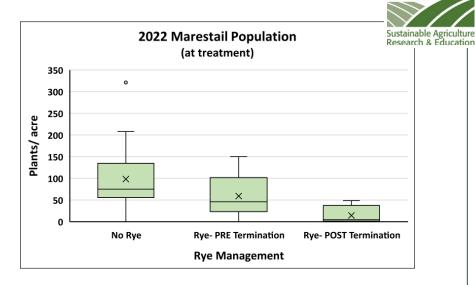





Rye biomass: seeding rate and termination timing



Weed suppression:


Reduction

PRE, 64.1%

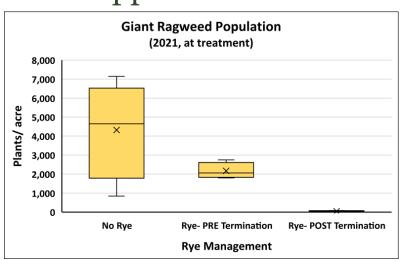
POST, 97.9%

Seeding rate, p

Combined	0.116
PRE	0.105
POST	0.795

Rye management, p < 0.034

Reduction


PRE, 40.0%

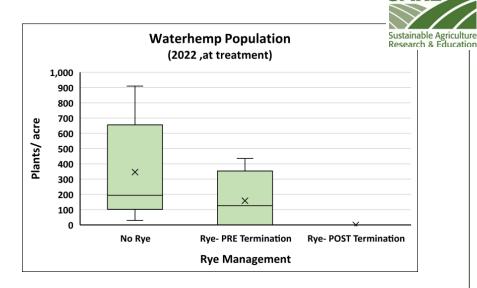
POST, 93.6%

Seeding rate, p

Combined	0.33
PRE	0.32
POST	0.23

Weed suppression:

Rye management, p < 0.006


Reduction

PRE, 49.8%

POST, 99.0%

Seeding rate, p

Combined	0.181
PRE	0.289
POST	0.142

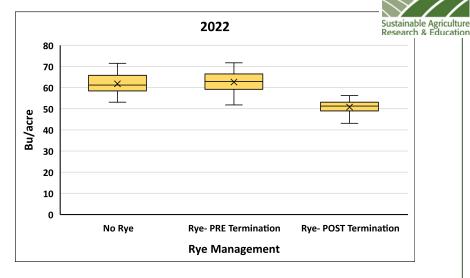
Rye management, p < 0.008

Reduction

PRE, 54.2%

POST, 99.9%

Seeding rate, p


 Combined
 0.088

 PRE
 0.076

 POST
 n/a

Soybean yield:

Rye management, p < 0.001

Comparison, no rye

PRE, 103.1%

POST, 71.2%

Seeding rate, p

 Combined
 0.155

 PRE
 0.047

 POST
 0.552

Rye management, p < 0.001

Comparison, no rye

PRE, 102.3%

POST, 86.6%

Seeding rate, p

Combined	0.350
PRE	0.860
POST	0 121

What the data doesn't show:

Planting green delayed in-season flush

Implication: 1 in-season application possible?

Fewer individuals + fewer applications = lower cost and resistance management

What the data doesn't show:

Both rye managements reduced late-season grass

Implication: potential to reduce late-season applications, systemic or residual products

What the data doesn't show:

Late termination can: delay maturity, increase moisture and lodging 2022

~ 7 days

+ 2%

The Upshot:

Weed suppression potential is substantial

maximized with late termination, >90% PRE provides ~50% with yield bump

Key component of resistance management fewer individuals + fewer applications

Yield loss with late termination UNACCEPTABLE

need to find the "sweet spot"

termination based on growth stage/ conditions

Questions?

Jim Stute jkstute@gmail.com

SARE PROJECT NUMBER ONC21-094

"Can planting green suppress troublesome glyphosate tolerant/resistant weeds in no-till soybean?"

