

Subsurface Drainage System Design and Management for Crop Production and Environmental Considerations

Dr. Matt Helmers
Iowa State University
January 13, 2012

Situation

- Substantial demand for agricultural products that are dependent on row-crop production
- Increased concern and demand for clean water
- Subsurface drainage systems are essential for row-crop production in the cornbelt
- Use of subsurface drainage systems increases the export of nitrate-N to downstream water bodies

Goals of Drainage

- Primary goals of agricultural drainage in humid areas are to:
 - provide for site trafficability for timely planting and harvesting and to lower the water, and
 - –lower the water content in the root zone to provide adequate aeration following excessive rainfall

Estimated Extent of Drainage

Source: USDA-ARS National Laboratory for Agriculture and the Environment

Nitrate Export

J.B. Crim Farm
Nov 15,1916 end of 54 inch block tile in northern Boone Co

20th Annual

Conference

No-Tilling Godley 66 NBelite Kilomolowws

20th Annual

No-Tilling Godley 66 NBelite Kilomolowws

20th Annual

No-Tilling Godley 66/NBelitle Kilomolowws

Drainage Coefficient and Drainage Intensity

- Drainage coefficient –how much water can exit the system in a unit of time – sizing of pipe
- Drainage intensity how much water can get to the drainage system in a unit of time spacing of the drainage system
- What controls outflow from the system? –
 Depends on system design

Drainage Coefficient – Amount of water that can be removed in a 24 hour period

Recommended Drainage Coefficients (NRCS Field Handbook)

	Inches to be removed in 24 hours	
Soil Type	Field crops	Truck crops
Mineral	3/8 to 1/2	1/2 to 3/4
Organic	1/2 to 3/4	3/4 to 1.5

Drainage Intensity

Steady-State Drainage Design

Hooghoudt Equation

 $DI=4K_eD(2 d_e+D)/L^2$

L = spacing between laterals (ft)

K_e = hydraulic conductivity (ft/day)

h = water table height above laterals (ft)

DI = drainage intensity (ft/day)

d_e = equivalent depth of impermeable

layer below pipe drain center (ft)

Annual Water Balance (31 in. of Precipitation)

Impacts of Drainage Intensity – Annual Flow

Impacts of Drainage Coefficient Annual Flow

Planning an Ag Drainage System

- Follow local, state, and federal regulations
- Gather soil information
- Outlet location and size
- Downstream limitations
- Is the new drainage system economical?

Soil Assessment

- Soil types and location
- Seasonal high water tables are there indicates of high water table conditions
- Soil texture
- Sources
 - -County soil surveys
 - State Drainage Guides
 - Local expertise or other tiling contractors

Design Flowchart

Background information (soils, existing drainage, etc.)

(Table 2-2. continued)

	Natural soil	Tile spacing, ft."	
Soil name	drainage'	36" depth	48" depth
Calco	Poor	65-85	80-110
Calcousta	Very poor	80-90	90-110
Caleb	Moderately well		
Calmar	Moderately well to well		
Camden	Well		
Caneek	Somewhat poor to poor	70-90	90-110
Canisteo	Poor	70-80	90-100

Design Flowchart

Background information

Determine Drainage Coefficient

Situations that may call for greater drainage coefficient

- High value crops
- Crops have low tolerance for wetness
- Topography is flat so there is little surface drainage
- Large amounts of surface residue
- Poor surface drainage
- Crop ET is low
- Planting and harvest times are critical

Required Drainage Capacity

Design Flowchart

Layout

- Layout determines uniformity of drainage
- Should start with contour (topo) map of field

Conventional Tile Layout

20th Annual Mational Mo-Tilla Conference St. Loois, Missouri - Jan. 11-1 No-Tilling Godgy 66/86-til-Kijo

Layout on Contour (more uniform drainage)

Design Flowchart

Design Flowchart

Drain Spacing

- Spacing determines drainage intensity
- Important for uniformity of drainage
- Use regional guides, computations for soil conditions, experience
- Perform soil test to assess in-situ conditions

(Table 2-2. continued)

	Natural soil	Tile spa	Tile spacing, ft. ²	
Soil name	drainage'	36" depth	48" depth	
Calco	Poor	65-85	80-110	
Calcousta	Very poor	80-90	90-110	
Caleb	Moderately well			
Calmar	Moderately well to well			
Camden	Well			
Caneek	Somewhat poor to poor	70-90	90-110	
Canisteo	Poor	70-80	90-100	

Drainage Design and Management

- How does drain spacing or drainage outlet capacity influence crop production?
- Can we design and/or manage our systems to optimize crop production while minimizing environmental impacts?

Drainage Water Management

- Objectives
 - Conserve soil water, increase yields, reduce losses of nutrients and other pollutants via drainage (specifically nitrate-nitrogen)
- Concept
 - Water that would drain out of the soil profile under conventional drainage is conserved and available to supply evapotranspiration requirements of the crop

Conventional Drainage

Drainage Water Management

The outlet is raised after harvest to reduce nitrate delivery during winter.

The outlet is lowered a few weeks before planting and harvest to allow the field to drain more fully.

The outlet is raised after planting to potentially store water for crops.

Crawfordsville

Annual Drainage

	Drainage (in)			
Treatment	2007	2008	2009	3-Yr Avg.
Conventional	10.12a	12.1a	15.0a	12.4a
Drainage Water Management	7.05a	9.13ab	9.72a	8.66b
Shallow	7.16a	5.63b	9.13a	7.28b
% Reduction Conv vs. DWM	30	24	35	30
% Reduction Conv vs. Shallow	29	53	39	41

Means within years or for the 3-yr average with a different letter are significantly different (p=0.05).

Corn Yield

Soybean Yield

Simulations of Response to Subsurface Drainage

- Can't afford field investigations on many soils, over many years, and for many drainage spacings.
 - –So, use a model that can represent major components of the systems (water flow and crop response to water stress – drought and excess water stress)
- DRAINMOD

Effects of Drain Spacing on Drainage and Surface Runoff – North-Central Iowa

Effects of Drain Spacing on Relative Corn Yield – North-Central Iowa

Effects of Drain Spacing on Net Annual Return – North-Central Iowa

Range of drain spacing to maximize crop production and net annual return

Region	Soil series	Range of drain spacing (ft.) to maximize		
		Crop production	Net annual return	
North East	CLYDE	40-60	60-80	
	CLYDE-FLOYD COMPLEX	40-60	65-85	
	TRIPOLI	40-60	45-65	
North Central	NICOLLET	55-75	115-135	
	CANISTEO	40-60	80-100	
	ОКОВОЛ	25-45	70-90	
Central	NICOLLET	55-75	115-135	
	CANISTEO	45-65	80-100	
	HARPS	30-50	55-75	
South East	TAINTOR	45-65	45-65	
	HAIG	40-60	60-80	

20th Annual Kational Ko-Tillage Conference St. Louis, Missouri + Jan. 11-14 2012

Approximate annual drainage when maximizing crop production and net annual return

		Drainage (in) when		
		maximizing		% reduction in
		Crop		drainage for net
Region	Soil series	production	Net annual return	return design
North East	CLYDE	10.2	9	12
	CLYDE-FLOYD COMPLEX	10.1	8.7	14
	TRIPOLI	9.8	9.3	5
North Central	NICOLLET	7.8	6.6	15
	CANISTEO	8	6.9	14
	ОКОВОЛ	8.5	6.6	22
Central	NICOLLET	8.4	7.3	13
	CANISTEO	8.1	7.2	11
	HARPS	8.9	7.5	16
South East	TAINTOR	9.3	8.8	5
	HAIG	9.4	8.2	13
	CLARINDA	10	8.2	18

Drain Capacity

- Study in 1980's investigated drainage in the Des Moines River Basin
- Drain capacity of many drainage district mains evaluated
- Example:
 - Calhoun County
 - Avg. drainage coefficient of 38 mains was 0.18 in/ day
 - Range in drainage coefficient from 0.05 to 0.44 in/ day

How much do Under Designed Systems Impact Yield?

20th Annual Kational Ko-Tillage Conference St. Louis, Missouri * Jan. 11-14 2012 No-Tilling Gradey 66 MB-Etil-KTombloows

Calhoun

District Size (acres)	Outlet Capacity (in/day)	Relative Yield	Inc in Rel. Yield if 0.5 in/day coefficient
1860	0.22	94	2
1025	0.18	92	4
1920	0.1	79	17
1600	0.09	76	21
2000	0.05	56	41
1920	0.13	86	10
1760	0.11	82	15
1120	0.44	97	0
1120	0.24	95	2
960	0.27	96	1
400	0.25	95	1

Summary

- Drainage is important for crop production
- Drainage design and management can be used to optimize crop production and minimize environmental impacts

Discussion

Contact info:
Matt Helmers
219B Davidson Hall
lowa State University
Ames, IA 50011
515-294-6717

mhelmers@iastate.edu

